Early Melanoma Detection Based on a Hybrid YOLOv5 and ResNet Technique

Author:

Elshahawy Manar1,Elnemr Ahmed2,Oproescu Mihai3ORCID,Schiopu Adriana-Gabriela4ORCID,Elgarayhi Ahmed2,Elmogy Mohammed M.1ORCID,Sallah Mohammed5ORCID

Affiliation:

1. Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt

2. Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

3. Faculty of Electronics, Communication, and Computer Science, University of Pitesti, 110040 Pitesti, Romania

4. Department of Manufacturing and Industrial Management, Faculty of Mechanics and Technology, University of Pitesti, 110040 Pitesti, Romania

5. Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia

Abstract

Skin cancer, specifically melanoma, is a serious health issue that arises from the melanocytes, the cells that produce melanin, the pigment responsible for skin color. With skin cancer on the rise, the timely identification of skin lesions is crucial for effective treatment. However, the similarity between some skin lesions can result in misclassification, which is a significant problem. It is important to note that benign skin lesions are more prevalent than malignant ones, which can lead to overly cautious algorithms and incorrect results. As a solution, researchers are developing computer-assisted diagnostic tools to detect malignant tumors early. First, a new model based on the combination of “you only look once” (YOLOv5) and “ResNet50” is proposed for melanoma detection with its degree using humans against a machine with 10,000 training images (HAM10000). Second, feature maps integrate gradient change, which allows rapid inference, boosts precision, and reduces the number of hyperparameters in the model, making it smaller. Finally, the current YOLOv5 model is changed to obtain the desired outcomes by adding new classes for dermatoscopic images of typical lesions with pigmented skin. The proposed approach improves melanoma detection with a real-time speed of 0.4 MS of non-maximum suppression (NMS) per image. The performance metrics average is 99.0%, 98.6%, 98.8%, 99.5, 98.3%, and 98.7% for the precision, recall, dice similarity coefficient (DSC), accuracy, mean average precision (MAP) from 0.0 to 0.5, and MAP from 0.5 to 0.95, respectively. Compared to current melanoma detection approaches, the provided approach is more efficient in using deep features.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3