Classification of Parkinson’s Disease in Patch-Based MRI of Substantia Nigra

Author:

Hussain Sayyed Shahid1ORCID,Degang Xu1,Shah Pir Masoom23,Islam Saif Ul4ORCID,Alam Mahmood3ORCID,Khan Izaz Ahmad2ORCID,Awwad Fuad A.5ORCID,Ismail Emad A. A.5ORCID

Affiliation:

1. School of Automation, Central South University, Changsha 410010, China

2. Department of Computer Science, Bacha Khan University Charsadda, Charsadda 24540, Pakistan

3. School of Computer Science and Engineering, Central South University, Changsha 410010, China

4. Department of Computer Science, Institute of Space Technology, Islamabad 44000, Pakistan

5. Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh 11587, Saudi Arabia

Abstract

Parkinson’s disease (PD) is a chronic and progressive neurological disease that mostly shakes and compromises the motor system of the human brain. Patients with PD can face resting tremors, loss of balance, bradykinesia, and rigidity problems. Complex patterns of PD, i.e., with relevance to other neurological diseases and minor changes in brain structure, make the diagnosis of this disease a challenge and cause inaccuracy of about 25% in the diagnostics. The research community utilizes different machine learning techniques for diagnosis using handcrafted features. This paper proposes a computer-aided diagnostic system using a convolutional neural network (CNN) to diagnose PD. CNN is one of the most suitable models to extract and learn the essential features of a problem. The dataset is obtained from Parkinson’s Progression Markers Initiative (PPMI), which provides different datasets (benchmarks), such as T2-weighted MRI for PD and other healthy controls (HC). The mid slices are collected from each MRI. Further, these slices are registered for alignment. Since the PD can be found in substantia nigra (i.e., the midbrain), the midbrain region of the registered T2-weighted MRI slice is selected using the freehand region of interest technique with a 33 × 33 sized window. Several experiments have been carried out to ensure the validity of the CNN. The standard measures, such as accuracy, sensitivity, specificity, and area under the curve, are used to evaluate the proposed system. The evaluation results show that CNN provides better accuracy than machine learning techniques, such as naive Bayes, decision tree, support vector machine, and artificial neural network.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3