Ultra-High-Resolution Electrocardiography Enables Earlier Detection of Transmural and Subendocardial Myocardial Ischemia Compared to Conventional Electrocardiography

Author:

Zaichenko Kirill V.1,Kordyukova Anna A.1ORCID,Sonin Dmitry L.12ORCID,Galagudza Michael M.12

Affiliation:

1. Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia

2. Department of Microcirculation and Myocardial Metabolism, Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia

Abstract

The sensitivity of exercise ECG is marginally sufficient for the detection of mild reduction of coronary blood flow in patients with early coronary atherosclerosis. Here, we describe the application of a new technique of ECG registration/analysis—ultra-high-resolution ECG (UHR ECG)—for early detection of myocardial ischemia (MIS). The utility of UHR ECG vs. conventional ECG (C ECG) was tested in anesthetized rats and pigs. Transmural MIS was induced in rats by the ligation of the left coronary artery (CA). In pigs, subendocardial ischemia of a variable extent was produced by stepwise inflation of a balloon within the right CA, causing a 25–100% reduction of its lumen. In rats, a reduction in power spectral density (PSD) in the high-frequency (HF) channel of UHR ECG was registered at 60 s after ischemia (power 0.81 ± 0.14 vs. 1.25 ± 0.12 mW at baseline, p < 0.01). This was not accompanied by any ST segment elevation on C ECG. In pigs, PSD in the HF channel of UHR ECG was significantly decreased at a 25% reduction of CA lumen, while the ST segment on C ECG remained unchanged. In conclusion, UHR ECG enabled earlier detection of transmural MIS compared to C ECG. PSD in the HF channel of UHR ECG demonstrated greater sensitivity in the settings of subendocardial ischemia.

Funder

Russian Foundation of Basic Research

Ministry of Education and Science of Russian Federation

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3