MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features

Author:

Dominguez Ignacio1ORCID,Rios-Ibacache Odette23ORCID,Caprile Paola24ORCID,Gonzalez Jose5,San Francisco Ignacio F.6,Besa Cecilia14ORCID

Affiliation:

1. Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile

2. Institute of Physics, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile

3. Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada

4. Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, ANID, Macul, Santiago 7820436, Chile

5. School of Medicine, Pontifical Catholic University of Chile, Santiago 8320000, Chile

6. Department of Urology, School of Medicine, Pontifical Catholic University of Chile, Santiago 8320000, Chile

Abstract

This study aimed to develop a noninvasive Machine Learning (ML) model to identify clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric MRI (bpMRI) radiomic features and clinical information. Methods: This retrospective study included 86 adult Hispanic men (60 ± 8.2 years, median prostate-specific antigen density (PSA-D) 0.15 ng/mL2) with PCa who underwent prebiopsy 3T MRI followed by targeted MRI–ultrasound fusion and systematic biopsy. Two observers performed 2D segmentation of lesions in T2WI/ADC images. We classified csPCa (GS ≥ 7) vs. non-csPCa (GS = 6). Univariate statistical tests were performed for different parameters, including prostate volume (PV), PSA-D, PI-RADS, and radiomic features. Multivariate models were built using the automatic feature selection algorithm Recursive Feature Elimination (RFE) and different classifiers. A stratified split separated the train/test (80%) and validation (20%) sets. Results: Radiomic features derived from T2WI/ADC are associated with GS in patients with PCa. The best model found was multivariate, including image (T2WI/ADC) and clinical (PV and PSA-D) information. The validation area under the curve (AUC) was 0.80 for differentiating csPCa from non-csPCa, exhibiting better performance than PI-RADS (AUC: 0.71) and PSA-D (AUC: 0.78). Conclusion: Our multivariate ML model outperforms PI-RADS v2.1 and established clinical indicators like PSA-D in classifying csPCa accurately. This underscores MRI-derived radiomics’ (T2WI/ADC) potential as a robust biomarker for assessing PCa aggressiveness in Hispanic patients.

Funder

ANID Chile

Millennium Science Initiative Program

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3