Deep-Learning-Based Real-Time and Automatic Target-to-Background Ratio Calculation in Fluorescence Endoscopy for Cancer Detection and Localization

Author:

Jiang Yang,Chen JingORCID,Gong Chen,Wang Thomas D.,Seibel Eric J.ORCID

Abstract

Esophageal adenocarcinoma (EAC) is a deadly cancer that is rising rapidly in incidence. The early detection of EAC with curative intervention greatly improves the prognoses of patients. A scanning fiber endoscope (SFE) using fluorescence-labeled peptides that bind rapidly to epidermal growth factor receptors showed a promising performance for early EAC detection. Target-to-background (T/B) ratios were calculated to quantify the fluorescence images for neoplasia lesion classification. This T/B calculation is generally based on lesion segmentation with the Chan–Vese algorithm, which may require hyperparameter adjustment when segmenting frames with different brightness and contrasts, which impedes automation to real-time video. Deep learning models are more robust to these changes, while accurate pixel-level segmentation ground truth is challenging to establish in the medical field. Since within our dataset the ground truth contained only a frame-level diagnosis, we proposed a computer-aided diagnosis (CAD) system to calculate the T/B ratio in real time. A two-step process using convolutional neural networks (CNNs) was developed to achieve automatic suspicious frame selection and lesion segmentation for T/B calculation. In the segmentation model training for Step 2, the lesion labels were generated with a manually tuned Chan–Vese algorithm using the labeled and predicted suspicious frames from Step 1. In Step 1, we designed and trained deep CNNs to select suspicious frames using a diverse and representative set of 3427 SFE images collected from 25 patient videos from two clinical trials. We tested the models on 1039 images from 10 different SFE patient videos and achieved a sensitivity of 96.4%, a specificity of 96.6%, a precision of 95.5%, and an area under the receiver operating characteristic curve of 0.989. In Step 2, 1006 frames containing suspicious lesions were used for training for fluorescence target segmentation. The segmentation models were tested on two clinical datasets with 100 SFE frames each and achieved mean intersection-over-union values of 0.89 and 0.88, respectively. The T/B ratio calculations based on our segmentation results were similar to the manually tuned Chan–Vese algorithm, which were 1.71 ± 0.22 and 1.72 ± 0.28, respectively, with a p-value of 0.872. With the graphic processing unit (GPU), the proposed two-step CAD system achieved 50 fps for frame selection and 15 fps for segmentation and T/B calculation, which showed that the frame rejection in Step 1 improved the diagnostic efficiency. This CAD system with T/B ratio as the real-time indicator is designed to guide biopsies and surgeries and to serve as a reliable second observer to localize and outline suspicious lesions highlighted by fluorescence probes topically applied in organs where cancer originates in the epithelia.

Funder

National Cancer Institute

Barrett’s Esophagus Translational Research Network

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3