Phantom Study on the Robustness of MR Radiomics Features: Comparing the Applicability of 3D Printed and Biological Phantoms

Author:

Veres GergőORCID,Kiss JánosORCID,Vas Norman Félix,Kallos-Balogh Piroska,Máthé Nóra Beatrix,Lassen Martin Lyngby,Berényi Ervin,Balkay László

Abstract

The objectives of our study were to (a) evaluate the feasibility of using 3D printed phantoms in magnetic resonance imaging (MR) in assessing the robustness and repeatability of radiomic parameters and (b) to compare the results obtained from the 3D printed phantoms to metrics obtained in biological phantoms. To this end, three different 3D phantoms were printed: a Hilbert cube (5 × 5 × 5 cm3) and two cubic quick response (QR) code phantoms (a large phantom (large QR) (5 × 5 × 4 cm3) and a small phantom (small QR) (4 × 4 × 3 cm3)). All 3D printed and biological phantoms (kiwis, tomatoes, and onions) were scanned thrice on clinical 1.5 T and 3 T MR with 1 mm and 2 mm isotropic resolution. Subsequent analyses included analyses of several radiomics indices (RI), their repeatability and reliability were calculated using the coefficient of variation (CV), the relative percentage difference (RPD), and the interclass coefficient (ICC) parameters. Additionally, the readability of QR codes obtained from the MR images was examined with several mobile phones and algorithms. The best repeatability (CV ≤ 10%) is reported for the acquisition protocols with the highest spatial resolution. In general, the repeatability and reliability of RI were better in data obtained at 1.5 T (CV = 1.9) than at 3 T (CV = 2.11). Furthermore, we report good agreements between results obtained for the 3D phantoms and biological phantoms. Finally, analyses of the read-out rate of the QR code revealed better texture analyses for images with a spatial resolution of 1 mm than 2 mm. In conclusion, 3D printing techniques offer a unique solution to create textures for analyzing the reliability of radiomic data from MR scans.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3