Differential Diagnosis of Thyrotoxicosis by Machine Learning Models with Laboratory Findings

Author:

Kim JinyoungORCID,Baek Han-SangORCID,Ha Jeonghoon,Kim Mee Kyoung,Kwon Hyuk-SangORCID,Song Ki-Ho,Lim Dong-JunORCID,Baek Ki-HyunORCID

Abstract

Differential diagnosis of thyrotoxicosis is essential because therapeutic approaches differ based on disease etiology. We aimed to perform differential diagnosis of thyrotoxicosis using machine learning algorithms with initial laboratory findings. This is a retrospective study through medical records. Patients who visited a single hospital for thyrotoxicosis from June 2016 to December 2021 were enrolled. In total, 230 subjects were analyzed: 124 (52.6%) patients had Graves’ disease, 65 (28.3%) suffered from painless thyroiditis, and 41 (17.8%) were diagnosed with subacute thyroiditis. In consideration that results for the thyroid autoantibody test cannot be immediately confirmed, two different models were devised: Model 1 included triiodothyronine (T3), free thyroxine (FT4), T3 to FT4 ratio, erythrocyte sediment rate, and C-reactive protein (CRP); and Model 2 included all Model 1 variables as well as thyroid autoantibody test results, including thyrotropin binding inhibitory immunoglobulin (TBII), thyroid-stimulating immunoglobulin, anti-thyroid peroxidase antibody, and anti-thyroglobulin antibody (TgAb). Differential diagnosis accuracy was calculated using seven machine learning algorithms. In the initial blood test, Graves’ disease was characterized by increased thyroid hormone levels and subacute thyroiditis showing elevated inflammatory markers. The diagnostic accuracy of Model 1 was 65–70%, and Model 2 accuracy was 78–90%. The random forest model had the highest classification accuracy. The significant variables were CRP and T3 in Model 1 and TBII, CRP, and TgAb in Model 2. We suggest monitoring the initial T3 and CRP levels with subsequent confirmation of TBII and TgAb in the differential diagnosis of thyrotoxicosis.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3