Visual Reassessment with Flux-Interval Plot Configuration after Automatic Classification for Accurate Atrial Fibrillation Detection by Photoplethysmography

Author:

Chu Justin,Yang Wen-Tse,Chang Yao-Ting,Yang Fu-LiangORCID

Abstract

Atrial fibrillation (AFib) is a common type of arrhythmia that is often clinically asymptomatic, which increases the risk of stroke significantly but can be prevented with anticoagulation. The photoplethysmogram (PPG) has recently attracted a lot of attention as a surrogate for electrocardiography (ECG) on atrial fibrillation (AFib) detection, with its out-of-hospital usability for rapid screening or long-term monitoring. Previous studies on AFib detection via PPG signals have achieved good results, but were short of intuitive criteria like ECG p-wave absence or not, especially while using interval randomness to detect AFib suffering from conjunction with premature contractions (PAC/PVC). In this study, we newly developed a PPG flux (pulse amplitude) and interval plots-based methodology, simply comprising an irregularity index threshold of 20 and regression error threshold of 0.06 for the precise automatic detection of AFib. The proposed method with automated detection on AFib shows a combined sensitivity, specificity, accuracy, and precision of 1, 0.995, 0.995, and 0.952 across the 460 samples. Furthermore, the flux-interval plot configuration also acts as a very intuitive tool for visual reassessment to confirm the automatic detection of AFib by its distinctive plot pattern compared to other cardiac rhythms. The study demonstrated that exclusive 2 false-positive cases could be corrected after the reassessment. With the methodology’s background theory well established, the detection process automated and visualized, and the PPG sensors already extensively used, this technology is very user-friendly and convincing for promoted to in-house AFib diagnostics.

Funder

Research Center for Applied Science, Academia Sinica

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3