Monitoring Protein Denaturation of Egg White Using Passive Microwave Radiometry (MWR)

Author:

Goryanin IgorORCID,Ovchinnikov LevORCID,Vesnin Sergey,Ivanov Yuri

Abstract

Passive microwave radiometry (MWR) is a measurement technique based on the detection of passive radiation in the microwave spectrum of different objects. When in equilibrium, this radiation is known to be proportional to the thermodynamic temperature of an emitting body. We hypothesize that living systems feature other mechanisms of emission that are based on protein unfolding and water rotational transitions. To understand the nature of these emissions, microwave radiometry was used in several in vitro experiments. In our study, we performed pilot measurements of microwave emissions from egg whites during denaturation induced by ethanol. Egg whites comprise 10% proteins, such as albumins, mucoproteins, and globulins. We observed a novel phenomenon: microwave emissions changed without a corresponding change in the water’s thermodynamic temperature. We also found striking differences between microwave emissions and thermodynamic temperature kinetics. Therefore, we hypothesize that these two processes are unrelated, contrary to what was thought before. It is known that some pathologies such as stroke or brain trauma feature increased microwave emissions. We hypothesize that this phenomenon originates from protein denaturation and is not related to the thermodynamic temperature. As such, our findings could explain the reason for the increase in microwave emissions after trauma and post mortem for the first time. These findings could be used for the development of novel diagnostics methods. The MWR method is inexpensive and does not require fluorescent or radioactive labels. It can be used in different areas of basic and applied pharmaceutical research, including in kinetics studies in biomedicine.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3