CSDNet: A Novel Deep Learning Framework for Improved Cataract State Detection

Author:

P.L Lahari1,Vaddi Ramesh1,Elish Mahmoud O.23,Gonuguntla Venkateswarlu4ORCID,Yellampalli Siva Sankar1

Affiliation:

1. Department of Electronics and Communication Engineering, SRM University AP, Andhra Pradesh, India

2. Computer Science Department, Gulf University for Science and Technology, Hawally 32093, Kuwait

3. GUST Engineering and Applied Innovation Research Center, Gulf University for Science and Technology, Hawally 32093, Kuwait

4. Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India

Abstract

Cataracts, known for lens clouding and being a common cause of visual impairment, persist as a primary contributor to vision loss and blindness, presenting notable diagnostic and prognostic challenges. This work presents a novel framework called the Cataract States Detection Network (CSDNet), which utilizes deep learning methods to improve the detection of cataract states. The aim is to create a framework that is more lightweight and adaptable for use in environments or devices with limited memory or storage capacity. This involves reducing the number of trainable parameters while still allowing for effective learning of representations from data. Additionally, the framework is designed to be suitable for real-time or near-real-time applications where rapid inference is essential. This study utilizes cataract and normal images from the Ocular Disease Intelligent Recognition (ODIR) database. The suggested model employs smaller kernels, fewer training parameters, and layers to efficiently decrease the number of trainable parameters, thereby lowering computational costs and average running time compared to other pre-trained models such as VGG19, ResNet50, DenseNet201, MIRNet, Inception V3, Xception, and Efficient net B0. The experimental results illustrate that the proposed approach achieves a binary classification accuracy of 97.24% (normal or cataract) and an average cataract state detection accuracy of 98.17% (normal, grade 1—minimal cloudiness, grade 2—immature cataract, grade 3—mature cataract, and grade 4—hyper mature cataract), competing with state-of-the-art cataract detection methods. The resulting model is lightweight at 17 MB and has fewer trainable parameters (175, 617), making it suitable for deployment in environments or devices with constrained memory or storage capacity. With a runtime of 212 ms, it is well-suited for real-time or near-real-time applications requiring rapid inference.

Funder

Symbiosis Centre for Medical Image Analysis, Symbiosis International

GUST Engineering and Applied Innovation Research Center at Gulf University for Science and Technology, Kuwait

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3