Deep Learning-Based Auto-Segmentation of Spinal Cord Internal Structure of Diffusion Tensor Imaging in Cervical Spondylotic Myelopathy

Author:

Fei Ningbo12ORCID,Li Guangsheng12,Wang Xuxiang1,Li Junpeng1,Hu Xiaosong13,Hu Yong123ORCID

Affiliation:

1. Spinal Division, Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524013, China

2. Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China

3. Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China

Abstract

Cervical spondylotic myelopathy (CSM) is a chronic disorder of the spinal cord. ROI-based features on diffusion tensor imaging (DTI) provide additional information about spinal cord status, which would benefit the diagnosis and prognosis of CSM. However, the manual extraction of the DTI-related features on multiple ROIs is time-consuming and laborious. In total, 1159 slices at cervical levels from 89 CSM patients were analyzed, and corresponding fractional anisotropy (FA) maps were calculated. Eight ROIs were drawn, covering both sides of lateral, dorsal, ventral, and gray matter. The UNet model was trained with the proposed heatmap distance loss for auto-segmentation. Mean Dice coefficients on the test dataset for dorsal, lateral, and ventral column and gray matter were 0.69, 0.67, 0.57, 0.54 on the left side and 0.68, 0.67, 0.59, 0.55 on the right side. The ROI-based mean FA value based on segmentation model strongly correlated with the value based on manual drawing. The percentages of the mean absolute error between the two values of multiple ROIs were 0.07, 0.07, 0.11, and 0.08 on the left side and 0.07, 0.1, 0.1, 0.11, and 0.07 on the right side. The proposed segmentation model has the potential to offer a more detailed spinal cord segmentation and would be beneficial for quantifying a more detailed status of the cervical spinal cord.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3