Deep Learning Algorithms for Screening and Diagnosis of Systemic Diseases Based on Ophthalmic Manifestations: A Systematic Review

Author:

Iao Wai Cheng1ORCID,Zhang Weixing1ORCID,Wang Xun1ORCID,Wu Yuxuan1ORCID,Lin Duoru1,Lin Haotian123

Affiliation:

1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China

2. Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, China

3. Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510060, China

Abstract

Deep learning (DL) is the new high-profile technology in medical artificial intelligence (AI) for building screening and diagnosing algorithms for various diseases. The eye provides a window for observing neurovascular pathophysiological changes. Previous studies have proposed that ocular manifestations indicate systemic conditions, revealing a new route in disease screening and management. There have been multiple DL models developed for identifying systemic diseases based on ocular data. However, the methods and results varied immensely across studies. This systematic review aims to summarize the existing studies and provide an overview of the present and future aspects of DL-based algorithms for screening systemic diseases based on ophthalmic examinations. We performed a thorough search in PubMed®, Embase, and Web of Science for English-language articles published until August 2022. Among the 2873 articles collected, 62 were included for analysis and quality assessment. The selected studies mainly utilized eye appearance, retinal data, and eye movements as model input and covered a wide range of systemic diseases such as cardiovascular diseases, neurodegenerative diseases, and systemic health features. Despite the decent performance reported, most models lack disease specificity and public generalizability for real-world application. This review concludes the pros and cons and discusses the prospect of implementing AI based on ocular data in real-world clinical scenarios.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Program of Guangzhou

Guangzhou Science and Technology Project

Science and Technology Planning Projects of Guangdong Province

Key-Area Research and Development of Guangdong Province

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3