Affiliation:
1. School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
2. Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
3. Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
4. Haematology Unit, Cancer Research Centre, Institute for Medical Research, Shah Alam 40170, Selangor, Malaysia
Abstract
(1) Background: Alpha (α)-thalassaemia is a genetic disorder that affects 5% of the world population. Deletional or nondeletional mutations of one or both HBA1 and HBA2 on chromosome 16 will result in reduced production of α-globin chains, a component of haemoglobin (Hb) that is required for the formation of red blood cells (RBCs). This study aimed to determine the prevalence, haematological and molecular characterisations of α-thalassaemia. (2) Method: The parameters were based on full blood count, high-performance liquid chromatography and capillary electrophoresis. The molecular analysis involved gap-polymerase chain reaction (PCR), multiplex amplification refractory mutation system-PCR, multiplex ligation-dependent probe amplification and Sanger sequencing. (3) Results: With a total cohort of 131 patients, the prevalence of α-thalassaemia was 48.9%, leaving the remaining 51.1% with potentially undetected α gene mutations. The following genotypes were detected: -α3.7/αα (15.4%), -α4.2/αα (3.7%), --SEA/αα (7.4%), αCSα/αα (10.3%), αAdanaα/αα (0.7%), αQuong Szeα/αα (1.5%), -α3.7/-α3.7 (0.7%), αCSα/αCSα (0.7%), -α4.2/αCSα (0.7%), –SEA/αCSα (1.5%), –SEA/αQuong Szeα (0.7%), -α3.7/αAdanaα (0.7%), --SEA/-α3.7 (2.2%) and αCSα/αAdanaα (0.7%). Indicators such as Hb (p = 0.022), mean corpuscular volume (p = 0.009), mean corpuscular haemoglobin (p = 0.017), RBC (p = 0.038) and haematocrit (p = 0.058) showed significant changes among patients with deletional mutations, but not between patients with nondeletional mutations. (4) Conclusions: A wide range of haematological parameters was observed among patients, including those with the same genotype. Thus, a combination of molecular technologies and haematological parameters is necessary for the accurate detection of α-globin chain mutations.
Funder
Universiti Sains Malaysia Research University