Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation

Author:

Aboussaleh Ilyasse1ORCID,Riffi Jamal1,Fazazy Khalid El1,Mahraz Mohamed Adnane1,Tairi Hamid1

Affiliation:

1. Laboratory of Computer Science, Signals, Automation and Cognitivism (LISAC), Department of Computer Science, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco

Abstract

The brain is the center of human control and communication. Hence, it is very important to protect it and provide ideal conditions for it to function. Brain cancer remains one of the leading causes of death in the world, and the detection of malignant brain tumors is a priority in medical image segmentation. The brain tumor segmentation task aims to identify the pixels that belong to the abnormal areas when compared to normal tissue. Deep learning has shown in recent years its power to solve this problem, especially the U-Net-like architectures. In this paper, we proposed an efficient U-Net architecture with three different encoders: VGG-19, ResNet50, and MobileNetV2. This is based on transfer learning followed by a bidirectional features pyramid network applied to each encoder to obtain more spatial pertinent features. Then, we fused the feature maps extracted from the output of each network and merged them into our decoder with an attention mechanism. The method was evaluated on the BraTS 2020 dataset to segment the different types of tumors and the results show a good performance in terms of dice similarity, with coefficients of 0.8741, 0.8069, and 0.7033 for the whole tumor, core tumor, and enhancing tumor, respectively.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3