Color Doppler Ultrasound Improves Machine Learning Diagnosis of Breast Cancer

Author:

Moustafa Afaf F.ORCID,Cary Theodore W.,Sultan Laith R.ORCID,Schultz Susan M.,Conant Emily F.,Venkatesh Santosh S.,Sehgal Chandra M.ORCID

Abstract

Color Doppler is used in the clinic for visually assessing the vascularity of breast masses on ultrasound, to aid in determining the likelihood of malignancy. In this study, quantitative color Doppler radiomics features were algorithmically extracted from breast sonograms for machine learning, producing a diagnostic model for breast cancer with higher performance than models based on grayscale and clinical category from the Breast Imaging Reporting and Data System for ultrasound (BI-RADSUS). Ultrasound images of 159 solid masses were analyzed. Algorithms extracted nine grayscale features and two color Doppler features. These features, along with patient age and BI-RADSUS category, were used to train an AdaBoost ensemble classifier. Though training on computer-extracted grayscale features and color Doppler features each significantly increased performance over that of models trained on clinical features, as measured by the area under the receiver operating characteristic (ROC) curve, training on both color Doppler and grayscale further increased the ROC area, from 0.925 ± 0.022 to 0.958 ± 0.013. Pruning low-confidence cases at 20% improved this to 0.986 ± 0.007 with 100% sensitivity, whereas 64% of the cases had to be pruned to reach this performance without color Doppler. Fewer borderline diagnoses and higher ROC performance were both achieved for diagnostic models of breast cancer on ultrasound by machine learning on color Doppler features.

Funder

National Institutes of Health

New York Medical College

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3