Deep-Learning-Based Visualization and Volumetric Analysis of Fluid Regions in Optical Coherence Tomography Scans

Author:

Kasireddy Harishwar Reddy1ORCID,Kallam Udaykanth Reddy1,Mantrala Sowmitri Karthikeya Siddhartha1,Kongara Hemanth1,Shivhare Anshul1,Saita Jayesh2,Vijay Sharanya2,Prasad Raghu2,Raman Rajiv3,Seelamantula Chandra Sekhar1

Affiliation:

1. Department of Electrical Engineering, Indian Institute of Science, Bengaluru 560012, India

2. Carl Zeiss India Pvt. Ltd., Bengaluru 560099, India

3. Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai 600006, India

Abstract

Retinal volume computation is one of the critical steps in grading pathologies and evaluating the response to a treatment. We propose a deep-learning-based visualization tool to calculate the fluid volume in retinal optical coherence tomography (OCT) images. The pathologies under consideration are Intraretinal Fluid (IRF), Subretinal Fluid (SRF), and Pigmented Epithelial Detachment (PED). We develop a binary classification model for each of these pathologies using the Inception-ResNet-v2 and the small Inception-ResNet-v2 models. For visualization, we use several standard Class Activation Mapping (CAM) techniques, namely Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM, and Self-Matching CAM, to visualize the pathology-specific regions in the image and develop a novel Ensemble-CAM visualization technique for robust visualization of OCT images. In addition, we demonstrate a Graphical User Interface that takes the visualization heat maps as the input and calculates the fluid volume in the OCT C-scans. The volume is computed using both the region-growing algorithm and selective thresholding technique and compared with the ground-truth volume based on expert annotation. We compare the results obtained using the standard Inception-ResNet-v2 model with a small Inception-ResNet-v2 model, which has half the number of trainable parameters compared with the original model. This study shows the relevance and usefulness of deep-learning-based visualization techniques for reliable volumetric analysis.

Funder

Carl Zeiss India Private Limited

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference38 articles.

1. Shu, Y., Ye, F., Liu, H., Wei, J., and Sun, X. (2023). Predictive value of pigment epithelial detachment markers for visual acuity outcomes in Neovascular Age-related Macular Degeneration. BMC Ophthalmol., 23.

2. Quantitative assessment of retinal fluid in Neovascular Age-related Macular Degeneration under anti-VEGF therapy;Reiter;Ther. Adv. Ophthalmol.,2022

3. Automatic quantification of retinal photoreceptor integrity to predict persistent disease activity in Neovascular Age-related Macular Degeneration using deep learning;Song;Front. Neurosci.,2022

4. (2023, May 14). What’s the Right OCT for You?. Available online: https://eyesoneyecare.com/resources/whats-the-right-oct-for-you/.

5. A cascaded convolutional neural network architecture for despeckling oct images;Anoop;Biomed. Signal Process. Control,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3