Polyp Detection from Colorectum Images by Using Attentive YOLOv5

Author:

Wan Jingjing,Chen BolunORCID,Yu YongtaoORCID

Abstract

Background: High-quality colonoscopy is essential to prevent the occurrence of colorectal cancers. The data of colonoscopy are mainly stored in the form of images. Therefore, artificial intelligence-assisted colonoscopy based on medical images is not only a research hotspot, but also one of the effective auxiliary means to improve the detection rate of adenomas. This research has become the focus of medical institutions and scientific research departments and has important clinical and scientific research value. Methods: In this paper, we propose a YOLOv5 model based on a self-attention mechanism for polyp target detection. This method uses the idea of regression, using the entire image as the input of the network and directly returning the target frame of this position in multiple positions of the image. In the feature extraction process, an attention mechanism is added to enhance the contribution of information-rich feature channels and weaken the interference of useless channels; Results: The experimental results show that the method can accurately identify polyp images, especially for the small polyps and the polyps with inconspicuous contrasts, and the detection speed is greatly improved compared with the comparison algorithm. Conclusions: This study will be of great help in reducing the missed diagnosis of clinicians during endoscopy and treatment, and it is also of great significance to the development of clinicians’ clinical work.

Funder

National Natural Science Foundation of China

Jiangsu Province Science and Technology Department

Natural Science Foundation of Education Department of Jiangsu Province

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3