Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients

Author:

Chowdhury Nakib HayatORCID,Reaz Mamun Bin Ibne,Haque Fahmida,Ahmad Shamim,Ali Sawal Hamid MdORCID,A Bakar Ahmad AshrifORCID,Bhuiyan Mohammad Arif Sobhan

Abstract

Chronic kidney disease (CKD) is one of the severe side effects of type 1 diabetes mellitus (T1DM). However, the detection and diagnosis of CKD are often delayed because of its asymptomatic nature. In addition, patients often tend to bypass the traditional urine protein (urinary albumin)-based CKD detection test. Even though disease detection using machine learning (ML) is a well-established field of study, it is rarely used to diagnose CKD in T1DM patients. This research aimed to employ and evaluate several ML algorithms to develop models to quickly predict CKD in patients with T1DM using easily available routine checkup data. This study analyzed 16 years of data of 1375 T1DM patients, obtained from the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials directed by the National Institute of Diabetes, Digestive, and Kidney Diseases, USA. Three data imputation techniques (RF, KNN, and MICE) and the SMOTETomek resampling technique were used to preprocess the primary dataset. Ten ML algorithms including logistic regression (LR), k-nearest neighbor (KNN), Gaussian naïve Bayes (GNB), support vector machine (SVM), stochastic gradient descent (SGD), decision tree (DT), gradient boosting (GB), random forest (RF), extreme gradient boosting (XGB), and light gradient-boosted machine (LightGBM) were applied to developed prediction models. Each model included 19 demographic, medical history, behavioral, and biochemical features, and every feature’s effect was ranked using three feature ranking techniques (XGB, RF, and Extra Tree). Lastly, each model’s ROC, sensitivity (recall), specificity, accuracy, precision, and F-1 score were estimated to find the best-performing model. The RF classifier model exhibited the best performance with 0.96 (±0.01) accuracy, 0.98 (±0.01) sensitivity, and 0.93 (±0.02) specificity. LightGBM performed second best and was quite close to RF with 0.95 (±0.06) accuracy. In addition to these two models, KNN, SVM, DT, GB, and XGB models also achieved more than 90% accuracy.

Funder

Xiamen University Malaysia

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3