Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia

Author:

Thongprayoon Charat,Sy-Go Janina Paula T.,Nissaisorakarn VoravechORCID,Dumancas Carissa Y.,Keddis Mira T.ORCID,Kattah Andrea G.,Pattharanitima PattharawinORCID,Vallabhajosyula SaraschandraORCID,Mao Michael A.ORCID,Qureshi Fawad,Garovic Vesna D.,Dillon John J.,Erickson Stephen B.,Cheungpasitporn WisitORCID

Abstract

Background: The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters. Methods: Consensus cluster analysis was performed based on demographic information, principal diagnoses, comorbidities, and laboratory data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum magnesium ≥ 2.4 mg/dL). Each cluster’s key features were determined using the standardized mean difference. The associations of the clusters with hospital mortality and one-year mortality were assessed. Results: In hypomagnesemia cohort (n = 13,320), consensus cluster analysis identified three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium. Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function. Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia cohort (n = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1, cluster 2 was associated with higher hospital mortality and one-year mortality. Conclusion: Our cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized patients with dysmagnesemia. Future studies are required to assess the application of this ML consensus clustering approach to care for hospitalized patients with dysmagnesemia.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3