Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)

Author:

Ahmad BilalORCID,Jun Sun,Palade VasileORCID,You Qi,Mao Li,Zhongjie Mao

Abstract

Deep learning has gained immense attention from researchers in medicine, especially in medical imaging. The main bottleneck is the unavailability of sufficiently large medical datasets required for the good performance of deep learning models. This paper proposes a new framework consisting of one variational autoencoder (VAE), two generative adversarial networks, and one auxiliary classifier to artificially generate realistic-looking skin lesion images and improve classification performance. We first train the encoder-decoder network to obtain the latent noise vector with the image manifold’s information and let the generative adversarial network sample the input from this informative noise vector in order to generate the skin lesion images. The use of informative noise allows the GAN to avoid mode collapse and creates faster convergence. To improve the diversity in the generated images, we use another GAN with an auxiliary classifier, which samples the noise vector from a heavy-tailed student t-distribution instead of a random noise Gaussian distribution. The proposed framework was named TED-GAN, with T from the t-distribution and ED from the encoder-decoder network which is part of the solution. The proposed framework could be used in a broad range of areas in medical imaging. We used it here to generate skin lesion images and have obtained an improved classification performance on the skin lesion classification task, rising from 66% average accuracy to 92.5%. The results show that TED-GAN has a better impact on the classification task because of its diverse range of generated images due to the use of a heavy-tailed t-distribution.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3