Development and Evaluation of an Electrochemical Biosensor for Detection of Dengue-Specific IgM Antibody in Serum Samples

Author:

Parkash Om,Abdullah Muhammad Amiruddin,Yean Chan YeanORCID,Sekaran Shamala Devi,Shueb Rafidah Hanim

Abstract

Dengue is an arbovirus disease transmitted mainly by Aedes mosquitoes. As dengue shares similar clinical symptoms with other infectious diseases, prompt and accurate diagnosis is pivotal to clinicians’ decisions on appropriate management. Conventional diagnostic tests to detect the dengue-specific IgM antibody are limited in their performance and ease of use. To address these issues, we developed and evaluated a biosensor based on screen-printed carbon electrodes (SPCEs) for the detection of dengue-specific immunoglobulin M (IgM) antibodies. Various optimisations were performed in order to increase the sensitivity and specificity of the biosensor. For optimal and proper orientation of the paratope sites of goat anti-human IgM capture antibodies (GAHICA), various antibody techniques, including passive, covalent, protein A, protein G and streptavidin/biotin systems, were tested on the SPCEs. The assay reagents for the biosensor were also optimised prior to its evaluation. Analytical sensitivity evaluation was carried out using pooled sera, while analytical specificity evaluation was conducted on a panel of six non-dengue serum samples. Subsequently, diagnostic sensitivity and specificity evaluation were performed using 144 reference samples. Electrochemical current signals generated from H2O2 catalysed by HRP-labelled anti-dengue detection antibodies were measured using the chronoamperometric technique. With a limit of detection (LOD) of 106 serum dilution, the analytical sensitivity of the developed biosensor was 10 times higher than commercial ELISA. The analytical specificity of this dengue IgM biosensor was 100%. Similarly, the biosensor’s diagnostic performance was 100% for sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). These findings suggest that the developed biosensor has a great potential to be used to diagnose dengue after seroconversion.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3