Lasers for Satellite Uplinks and Downlinks

Author:

Dmytryszyn Mark,Crook Matthew,Sands TimothyORCID

Abstract

The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, and even lasers as weapons (e.g., Airborne Laser). Lasers in the support of telecommunications is also not new. The use of laser light in fiber optics has shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What is new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. The purpose of the manuscript is to develop key performance parameters (KPPs) to inform the U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development. By appreciating the history and technological challenges of employing lasers, rather than traditional radio frequency sources for satellite uplink and downlink signal carriers, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, and large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploit (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt.

Publisher

MDPI AG

Reference147 articles.

1. Space Warfare: Strategy;Klein,2006

2. Transformational Satellite (TSAT) Communications Systems: Falling Short on Delivering Advanced Capabilities and Bandwidth to Ground-Based Users Air University Press, Maxwell Air Force Basehttps://www.semanticscholar.org/paper/Transformational-Satellite-(TSAT)-Communications-on-McKinney/9b46a7134f56c1605ed9aed842ed396b0453084b

3. Laser Technology in Photonic Applications for Space

4. Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3