Abstract
With the gradual opening of China’s electricity market, it is effective for cascade hydropower plants to simultaneously participate in both the monthly contract market and the day-ahead spot market to obtain higher power generation benefits. Hence, this paper studies the optimal decomposition model for the monthly contracted electricity of cascade hydropower plants considering the bidding space in the day-ahead spot market. The close hydraulic and electric connection between cascade hydropower plants, the implementation requirements of contracted electricity, and the uncertainty of the day-ahead market clearing price are all well considered. Several linearization techniques are proposed to address the nonlinear factors, including the objective function and the power generation function. A successive approximation (SA) approach, along with a mixed-integer linear programming (MILP) approach, is then developed to solve the proposed model. The presented model is verified by taking the decomposition of the monthly contracted electricity of cascade hydropower plants in China as an example. The results indicate that the developed model has high computational efficiency and can increase the power generation benefits compared with the conventional deterministic model. The effect of the penalty coefficient for imbalanced monthly contracted electricity is also evaluated, which provides a practical reference for market managers.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Yunnan Power Grid Co., LTD
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献