Characteristics of Weathering Reservoirs and Differences in Fracture Formation in the Weathering Crust of the Pre-Cenozoic Basement of Lishui Sag, East China Sea Basin, China

Author:

Liu Jinshui1,Tang Huafeng2ORCID

Affiliation:

1. Shanghai Branch, CNOOC China Limited, Shanghai 200335, China

2. College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract

Fractures are the main reservoir space in basement weathering crusts and control the development of dissolution/alteration pores. A clear understanding of the main factors controlling fracture formation is needed to accurately predict reservoir characteristics. In this study, the reservoir characteristics along with the vertical zonation and thermal history of basement weathering crust were studied through lithology, mineral identification, porosity and permeability tests, nuclear magnetic resonance (T2), whole-rock analysis, and fission-track dating based on core samples, cuttings, and imaging logging data. Under the constraints of the Anderson model, the formation stages and timing of fractures were analyzed according to the regional stress field, fracture strike, fracture filling characteristics, and rock mechanical properties. The results revealed tensile structural fractures, shear structural fractures, weathering micro-fractures, alteration fractures, and intracrystalline alteration pores in the weathering crust of the Pre-Cenozoic basement in Lishui Sag. The reservoirs were characterized by low porosity, low permeability, and small pore diameter. The reservoir quality of granite was better than that of gneiss. The weathering crust could be divided into four zones: the soil layer, weathering dissolution zone, weathering fracture zone, and bedrock zone. The thickness of the soil layer and weathering dissolution zone were small. Four stages of fractures were identified: Yandang movement shear fractures, Paleocene tension structural fractures, Huagang movement shear fractures, and Longjing movement shear fractures. The main stage of basement fracture formation differed between the Lingfeng buried hill zone and Xianqiao structural zone. Considering the influence of the temperature and pressure environment on the rock’s mechanical properties, the differential fracture formation is related to the lithology, the coupling between the uplifted and exposed basement histories, and the tectonic stress field. Combined with the thermal histories of the Lingfeng buried hill zone and Xianqiao structural zone, the results suggest that the Lingfeng buried hill granite is favorable for basement fractures in Lishui Sag. Overall, this paper provides a novel method for analyzing the stages of fracture formation.

Funder

Key Science and Technology Project of Seven-year Action Plan of CNOOC

Key Research and Development Program of Jilin Province

Publisher

MDPI AG

Reference59 articles.

1. Bach ho field, a fractured granitic basement reservoir, Cuu long basin, offshore se Vietnam: A “buried-hill” play;Cuong;J. Pet. Geol.,2009

2. Fluids and H2O activity at the onset of granulite facies metamorphism;Newton;J. Precambrian Res.,2014

3. Gas resources and accumulation model of BZ19-6 Archean buried-hill large-scale gas reservoir in Bozhong Sag, Bohai Bay Basin;Xie;J. Pet. Geol. Exp.,2020

4. Formation conditions and geological significance of large Archean buried hill reservoirs in Bohai Sea;Zhou;J. Earth Sci.,2022

5. Characteristics and controlling factors of reservoirs in Penglai 9-1 large-scale oilfield in buried granite hills, Bohai Sea;Wang;J. Oil Gas Geology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3