Effect of Low Viscosity Contrast between Quartz and Plagioclase on Creep Behavior of the Mid-Crustal Shear Zone

Author:

Endo Hiroto1,Michibayashi Katsuyoshi23ORCID,Okudaira Takamoto4ORCID,Mainprice David5

Affiliation:

1. Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan

2. Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan

3. Volcanoes and Earth’s Interior Research Center, Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan

4. Department of Geosciences, Osaka Metropolitan University, Osaka 558-8585, Japan

5. Géoscience, Université de Montpellier 2, CNRS, CEDEX 05, 34095 Montpellier, France

Abstract

Ultramylonites are among the most extreme fault rocks that commonly occur in the mid-crustal brittle–plastic transition and are mainly characterized by intensely sheared fine-grained microstructures and well-mixed mineral phases. Although the deformation mechanism of ultramylonites is key to understanding the rheological behavior of the mid-crustal shear zone, their microstructural development is still controversial owing to their intensely fine-grained textures. To investigate the possible crustal deformation mechanisms, we studied 13 mylonites obtained from the Kashio shear zone along the Median Tectonic Line that is the largest strike-slip fault in Japan. In particular, we investigated various mixed quartz–plagioclase layers developed within tonalitic mylonite, which are representative of the common mean grain size and crystal fabric of quartz among the studied samples. A high-quality phase-orientation map obtained by electron backscattered diffraction showed not only a wide range of quartz–plagioclase mixing (10%–80% in quartz modal composition) but also revealed a correlation between grain size reduction and crystal fabric weakening in quartz, indicating a change in the deformation mechanism from dislocation creep to grain-size-sensitive creep in the mixed quartz-plagioclase layers. In contrast, plagioclase showed an almost consistent fine grain size and weak to random crystal fabrics regardless of modal composition, indicating that grain size-sensitive creep is dominant. Combined with laboratory-determined flow laws, our results show that the Kashio shear zone could have developed under deformation mechanisms in which the viscosities of quartz and plagioclase are nearly comparable, effectively within 1017–1019 Pa·s, thereby possibly enabling extensive shearing along the Median Tectonic Line.

Funder

Japan Society of the Promotion of Science

Publisher

MDPI AG

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3