Deep Learning for Refined Lithology Identification of Sandstone Microscopic Images

Author:

Wang Chengrui1ORCID,Li Pengjiang2ORCID,Long Qingqing1,Chen Haotian2,Wang Pengfei12ORCID,Meng Zhen12,Wang Xuezhi12,Zhou Yuanchun12ORCID

Affiliation:

1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China

2. University of Chinese Academy of Sciences, Beijing 100045, China

Abstract

Refined lithology identification is an essential task, often constrained by the subjectivity and low efficiency of classical methods. Computer-aided automatic identification, while useful, has seldom been specifically geared toward refined lithology identification. In this study, we introduce Rock-ViT, an innovative machine learning approach. Its architecture, enhanced with supervised contrastive loss and rooted in visual Transformer principles, markedly improves accuracy in identifying complex lithological patterns. To this end, we have collected public datasets and implemented data augmentation, aiming to validate our method using sandstone as a focal point. The results demonstrate that Rock-ViT achieves superior accuracy and effectiveness in the refined lithology identification of sandstone. Rock-ViT presents a new perspective and a feasible approach for detailed lithological analysis, offering fresh insights and innovative solutions in geological analysis.

Funder

Key Research Program of Frontier Sciences, CAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3