Geochemistry, Sr-Nd Isotope Compositions, and U-Pb Chronology of Apatite from Kimberlite in Wafangdian, North China Craton: Constraints on the Late Magmatic Processes

Author:

Ma Sishun1,Wang Ende1,Fu Haitao2,Fu Jianfei1,Men Yekai13,You Xinwei1ORCID,Song Kun4,Wan Fanglai56,Liu Liguang6

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. Liaoning Geological Exploration and Mining Group, Shenyang 110032, China

3. School of Resource and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

4. School of Earth and Space Sciences, Peking University, Beijing 100871, China

5. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

6. Liaoning Sixth Geological Brigade Co., Ltd., Dalian 116200, China

Abstract

Diamondiferous kimberlites occur in the Wafangdian area in the eastern part of the North China Craton (NCC). In order to better constrain their magmatic source and emplacement time, we have investigated apatite from two kimberlites, i.e., the #110 dike kimberlite and the #50 root-zone kimberlite by measuring in situ their U–Pb and Sr–Nd isotopic compositions. The crystallization ages of the #110 and #50 apatites are 460.9 ± 16.8 Ma and 455.4 ± 19.3 Ma, respectively. For the #50 apatite, 87Sr/86Sr = 0.70453–0.70613 and εNd(t) = −2.74 to −4.52. For the #110 apatite, 87Sr/86Sr = 0.70394–0.70478 and εNd(t) = −3.46 to −5.65. Based on the similar distribution patterns of the rare earth elements (REEs) and the similar Sr-Nd isotope compositions of the apatite, it is believed that the #110 and #50 kimberlites have the same source region and the kimberlite magmas in Wafangdian were derived from an enriched mantle source (EMI). The primary magmatic composition has little effect on the emplacement pattern. It is more likely that the geological environment played an important role in controlling the retention and removal of volatile components (H2O and CO2). This led to the different evolutionary paths of the kimberlite magma in the later period, resulting in differences in the major element compositions of the apatite. High Sr concentrations may be associated with hydrothermal (H2O-rich fluid) overprinting events in the later magmatic period; the higher light rare earth element (LREE) concentration of the #50 apatite reflects the involvement of the REE3+ + SiO44− ⇔ Ca2+ + PO43− replacement mechanism. Two emplacement patterns of the #110 dike kimberlite (#110 apatite, low Sr, and high Si) and the #50 root-zone (#50 apatite, high Sr, and low Si) kimberlites were identified via major element analysis of the #110 apatite and #50 apatite.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3