Interactions of Acetylene-Derived Thioester Collectors with Gold Surfaces: A First-Principles Study

Author:

Qiu Xianyang123,Qi Yuechao1,Wei Dezhou1,Zhang Faming23,Wang Chenghang23

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, China

3. State Key Laboratory of Separation and Comprehensive Utilization of Rare Metal, Guangzhou 510651, China

Abstract

The high reactivity of the acetylene group enables the formation of strong chemical bonds with active sites on mineral surfaces, thereby improving the flotation performance of gold minerals. This study utilized density functional theory (DFT) to analyze the quantum chemical parameters of structure, Mulliken population, and the frontier orbitals of a thioester collector containing an acetylene group, PDEC (prop-2-yn-1-yl diethylcarbamodithioate). PDEC was compared with analogous thioester collectors Z-200 and Al-DECDT. The interaction mechanism of PDEC on the Au(1 1 1) surface was simulated, followed by empirical validation through adsorption experiments. The findings indicate that the S atom of PDEC in the carbon–sulfur group exhibits shorter covalent bond lengths, and has reduced carbon–sulfur double bonds and Mulliken population, resulting in enhanced electron localization. This confers greater selectivity to PDEC during its adsorption on mineral surfaces. Frontier orbital analysis shows that the electrons of the acetylene group possess a notable electron-accepting capacity, significantly influencing the frontier orbital energy of PDEC and playing a pivotal role in the bonding interaction with mineral surfaces. Both the S atom in the carbon–sulfur group and its acetylene group establish stable adsorption structures with the A(111) surface in a single coordination mode. The adsorption energy sequence is PDEC > Al-DECDT > Z-200. Partial density of states demonstrates that the S 3p orbit of the carbon–sulfur group hybridizes with the Au 5d orbit, while the C 2p orbit of the acetylene group engages in weaker back-donation bonding with the Au 5d orbit. This is corroborated by the electron density difference and post-adsorption Mulliken population analyses, revealing that the S atom of the carbon–sulfur group in PDEC donates electrons to the Au atom, forming dominant positive coordination bonds, whereas the acetylene group accepts partial electrons from the Au atom, resulting in weaker back-donation bonds. The adsorption experiments align with the DFT adsorption energy results.

Funder

Project of Yunnan Precious Metals Laboratory Co., Ltd

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3