AcquisitionFocus: Joint Optimization of Acquisition Orientation and Cardiac Volume Reconstruction Using Deep Learning

Author:

Weihsbach Christian1ORCID,Vogt Nora2ORCID,Al-Haj Hemidi Ziad1ORCID,Bigalke Alexander1ORCID,Hansen Lasse3ORCID,Oster Julien24ORCID,Heinrich Mattias P.1ORCID

Affiliation:

1. Institute of Medical Informatics, University of Lübeck, 23562 Lübeck, Germany

2. IADI U1254, Inserm, Université de Lorraine, 54511 Nancy, France

3. EchoScout GmbH, 23562 Lübeck, Germany

4. CHRU-Nancy, Inserm, Université de Lorraine, CIC 1433, Innovation Technologique, 54000 Nancy, France

Abstract

In cardiac cine imaging, acquiring high-quality data is challenging and time-consuming due to the artifacts generated by the heart’s continuous movement. Volumetric, fully isotropic data acquisition with high temporal resolution is, to date, intractable due to MR physics constraints. To assess whole-heart movement under minimal acquisition time, we propose a deep learning model that reconstructs the volumetric shape of multiple cardiac chambers from a limited number of input slices while simultaneously optimizing the slice acquisition orientation for this task. We mimic the current clinical protocols for cardiac imaging and compare the shape reconstruction quality of standard clinical views and optimized views. In our experiments, we show that the jointly trained model achieves accurate high-resolution multi-chamber shape reconstruction with errors of <13 mm HD95 and Dice scores of >80%, indicating its effectiveness in both simulated cardiac cine MRI and clinical cardiac MRI with a wide range of pathological shape variations.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Reference32 articles.

1. Cardiac MR: From theory to practice;Ismail;Front. Cardiovasc. Med.,2022

2. Noise in MRI;Macovski;Magn. Reson. Med.,1996

3. Cardiovascular magnetic resonance physics for clinicians: Part I;Ridgway;J. Cardiovasc. Magn. Reson.,2010

4. SENSE: Sensitivity encoding for fast MRI;Pruessmann;Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med.,1999

5. Generalized autocalibrating partially parallel acquisitions (GRAPPA);Griswold;Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3