Social Emotional Opinion Decision with Newly Coined Words and Emoticon Polarity of Social Networks Services

Author:

Yang Jin SolORCID,Ko Myung-Sook,Chung Kwang SikORCID

Abstract

Nowadays, based on mobile devices and internet, social network services (SNS) are common trends to everyone. Social opinions as public opinions are very important to the government, company, and a person. Analysis and decision of social polarity of SNS about social happenings, political issues and government policies, or commercial products is very critical to the government, company, and a person. Newly coined words and emoticons on SNS are created every day. Specifically, emoticons are made and sold by a person or companies. Newly coined words are mostly made and used by various kinds of communities. The SNS big data mainly consist of normal text with newly coined words and emoticons so that newly coined words and emoticons analysis is very important to understand the social and public opinions. Social big data is informally made and unstructured, and on social network services, many kinds of newly coined words and various emoticons are made anonymously and unintentionally by people and companies. In the analysis of social data, newly coined words and emoticons limit the guarantee the accuracy of analysis. The newly coined words implicitly contain the social opinions and trends of people. The emotional states of people significantly are expressed by emoticons. Although the newly coined words and emoticons are an important part of the social opinion analysis, they are excluded from the emotional dictionary and social big data analysis. In this research, newly coined words and emoticons are extracted from the raw Twitter’s twit messages and analyzed and included in a pre-built dictionary with the polarity and weight of the newly coined words and emoticons. The polarity and weight are calculated for emotional classification. The proposed emotional classification algorithm calculates the weight of polarity (positive or negative) and results in total polarity weight of social opinion. If the total polarity weight of social opinion is more than the pre-fixed threshold value, the twit message is decided as positive. If it is less than the pre-fixed threshold value, the twit message is decided as negative and the other values mean neutral opinion. The accuracy of the social big data analysis result is improved by quantifying and analyzing emoticons and newly coined words.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference17 articles.

1. Samsung-Apple patent war case analysis: Focus on the strategy to deal with patent litigation;Kim;J. Digit. Converg.,2015

2. Twitter mood predicts the stock market

3. More Tweets, More Votes: Social Media as a Quantitative Indicator of Political Behavior

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3