An Efficient Building Extraction Method from High Spatial Resolution Remote Sensing Images Based on Improved Mask R-CNN

Author:

Zhang Lili,Wu Jisen,Fan Yu,Gao HongminORCID,Shao Yehong

Abstract

In this paper, we consider building extraction from high spatial resolution remote sensing images. At present, most building extraction methods are based on artificial features. However, the diversity and complexity of buildings mean that building extraction methods still face great challenges, so methods based on deep learning have recently been proposed. In this paper, a building extraction framework based on a convolution neural network and edge detection algorithm is proposed. The method is called Mask R-CNN Fusion Sobel. Because of the outstanding achievement of Mask R-CNN in the field of image segmentation, this paper improves it and then applies it in remote sensing image building extraction. Our method consists of three parts. First, the convolutional neural network is used for rough location and pixel level classification, and the problem of false and missed extraction is solved by automatically discovering semantic features. Second, Sobel edge detection algorithm is used to segment building edges accurately so as to solve the problem of edge extraction and the integrity of the object of deep convolutional neural networks in semantic segmentation. Third, buildings are extracted by the fusion algorithm. We utilize the proposed framework to extract the building in high-resolution remote sensing images from Chinese satellite GF-2, and the experiments show that the average value of IOU (intersection over union) of the proposed method was 88.7% and the average value of Kappa was 87.8%, respectively. Therefore, our method can be applied to the recognition and segmentation of complex buildings and is superior to the classical method in accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3