Understanding the PLA–Wood Adhesion Interface for the Development of PLA-Bonded Softwood Laminates

Author:

Grigsby Warren J.ORCID,Gaugler MarcORCID,Torayno Desiree

Abstract

With polylactic acid (PLA) usage projected to increase in wood-based composite materials, a study comparing composite processing parameters with resulting PLA−wood adhesion and panel performance is warranted. In this study, PLA-softwood veneer laminates have been prepared and spatial chemical imaging via FTIR analysis was applied to identify PLA bondlines characterizing bondline thickness and the extent of PLA migration into the wood matrix. These PLA–wood adhesion interface characteristics have been compared with the performance of panels varying in pressing temperature, pressing time and PLA grades. For amorphous PLA, bondline thicknesses (60–120 μm) were similar, pressing at 140 °C or 160 °C, whereas with semi-crystalline PLA, the bondline thickness (340 μm) significantly reduced (155–240 μm) only when internal panel temperatures exceeded 140 °C during pressing. Internal temperatures also impacted PLA penetration, with greater PLA migration from bondlines evident with higher pressing temperatures and times with distinctions between PLA grades and bondline position. Performance testing revealed thinner PLA bondlines were associated with greater dry strength for both PLA grades. Cold-water soaking revealed laminated panels exhibit a range of wet-strength performance related to panel-pressing regimes with the semi-crystalline PLA pressed at 180 °C having similar tensile strength in dry and wet states. Moreover, an excellent correlation between wet-strength performance and bondline thickness and penetration values was evident for this PLA grade. Overall, study findings demonstrate PLA wood composite performance can be tuned through a combination of the PLA grade and the pressing regime employed.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3