A Novel Adaptive Feature Fusion Strategy for Image Retrieval

Author:

Lu XiaojunORCID,Zhang Libo,Niu Lei,Chen Qing,Wang Jianping

Abstract

In the era of big data, it is challenging to efficiently retrieve the required images from the vast amount of data. Therefore, a content-based image retrieval system is an important research direction to address this problem. Furthermore, a multi-feature-based image retrieval system can compensate for the shortage of a single feature to a certain extent, which is essential for improving retrieval system performance. Feature selection and feature fusion strategies are critical in the study of multi-feature fusion image retrieval. This paper proposes a multi-feature fusion image retrieval strategy with adaptive features based on information entropy theory. Firstly, we extract the image features, construct the distance function to calculate the similarity using the information entropy proposed in this paper, and obtain the initial retrieval results. Then, we obtain the precision of single feature retrieval based on the correlation feedback as the retrieval trust and use the retrieval trust to select the effective features automatically. After that, we initialize the weights of selected features using the average weights, construct the probability transfer matrix, and use the PageRank algorithm to update the initialized feature weights to obtain the final weights. Finally, we calculate the comprehensive similarity based on the final weights and output the detection results. This has two advantages: (1) the proposed strategy uses multiple features for image retrieval, which has better performance and more substantial generalization than the retrieval strategy based on a single feature; (2) compared with the fixed-feature retrieval strategy, our method selects the best features for fusion in each query, which takes full advantages of each feature. The experimental results show that our proposed method outperforms other methods. In the datasets of Corel1k, UC Merced Land-Use, and RSSCN7, the top10 retrieval precision is 99.55%, 88.02%, and 88.28%, respectively. In the Holidays dataset, the mean average precision (mAP) was 92.46%.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3