Magnolia and Viburnum Plant Factors at Different Growing Seasons and Allowed Depletion Levels in a Monsoonal Climate

Author:

Sun Hongyan,Kjelgren Roger,Dukes Michael D.,Beeson Richard C.

Abstract

We investigated seasonal water use, growth and acceptable root-zone water depletion levels to develop tools for the more precise irrigation of two Southeast U.S. landscape species in a monsoonal climate—Magnolia grandiflora and Viburnum odoratissimum. The study was conducted under a rainout shelter consisting of two concurrent studies. One, weighing lysimeter readings of quantified water use (ETA) at different levels of irrigation frequency that dried the root zone to different allowable depletion levels (ADL). Two, planting the same species and sizes inground and irrigating them to the same ADLs to assess the effect of root-zone water depletion on growth. The projected crown area (PCA) and crown volume were concurrently measured every three weeks in both studies as well as reference evapotranspiration (ETo). Plant factor values were calculated from the ratio of ETA (normalized to depth units by PCA) to ETo. The two species had different tolerances for irrigation frequency depending on the season: peak magnolia canopy growth was mid-spring to mid-summer, while peak viburnum canopy growth was summer. Canopy growth for both species was most sensitive to greater ADL-water stress during the peak growth stages of both species. For urban landscape irrigation, these data suggest that 60–75% of available water in magnolia and viburnum root zones can be depleted before irrigation and that they can be irrigated at a plant factor (PF) value of 0.6 of ETo. For landscape situations with high expectations, such as during establishment and especially during peak growth, a wetter water budget that minimizes water stress would be more appropriate: 30–45% ADL and PF values of 0.7–0.8. The results of this study are aimed at water managers and landscape architects and designers in a humid climate who need to account for water demand in planning scenarios.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3