An Open-Hardware Insemination Device for Small-Bodied Live-Bearing Fishes to Support Development and Use of Germplasm Repositories

Author:

Harmon Elise R.,Liu YueORCID,Shamkhalichenar Hamed,Browning Valentino,Savage Markita,Tiersch Terrence R.ORCID,Monroe William ToddORCID

Abstract

Small-bodied live-bearing fishes attract broad attention because of their importance in biomedical research and critical conservation status in natural habitats. Artificial insemination is an essential process to establish hybrid lines and for the operation of sperm repositories. The existing mouth-pipetting technique for artificial insemination of live-bearing fishes has not been substantially upgraded since the first implementation in the 1950s. The goal of this work was to develop a standardized artificial inseminator device (SAID) to address issues routinely encountered in insemination by mouth-pipetting, including lack of reproducibility among different users, difficulty in training, and large unreportable variation in sample volume and pressure during insemination. Prototypes of the SAID were designed as relatively inexpensive (<USD 80) open hardware based on commercially available and 3-D printed components to enable broad community access. A linear actuator was used to accurately control the position of a piston for fluid transfer with a standard deviation of <0.1 mm over a 4 mm range of travel. The volume of sample transfer was precisely controlled with a linear relationship (r2 > 0.99) between the piston position and volume. Pressure generation from eight mouth-pipetting operators and SAID prototypes were assessed by pressure sensors. The pressure control by SAID was superior to that produced by mouth-pipetting, yielding lower pressures (31–483 Pa) and smaller variations (standard deviation <11 Pa). These pressures were sufficient to deliver 1–5 μL of fluid into female reproductive tracts yet low enough to avoid physical injury to fish. Community-level enhancements of the SAID prototype could enable standardized insemination with minimal training and facilitate the participation of research communities in the use of cryopreserved genetic resources.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3