Abstract
Cellulases have been used to extract bioactive ingredients from medical plants; however, the poor enzymatic properties of current cellulases significantly limit their application. Two strategies are expected to address this concern: (1) new cellulase gene mining strategies have been promoted, optimized, and integrated, thanks to the improvement of gene sequencing, genomic data, and algorithm optimization, and (2) known cellulases are being modified, thanks to the development of protein engineering, crystal structure data, and computing power. Here, we focus on mining strategies and provide a systemic overview of two approaches based on sequencing and function. Strategies based on protein structure modification, such as introducing disulfide bonds, proline, salt bridges, N-glycosylation modification, and truncation of loop structures, have already been summarized. This review discusses four aspects of cellulase-assisted extraction. Initially, cellulase alone was used to extract bioactive substances, and later, mixed enzyme systems were developed. Physical methods such as ultrasound, microwave, and high hydrostatic pressure have assisted in improving extraction efficiency. Cellulase changes the structure of biomolecules during the extraction process to convert them into effective ingredients with better activity and bioavailability. The combination of cellulase with other enzymes and physical technologies is a promising strategy for future extraction applications.
Funder
National Key Research and Development Project
Subject
Microbiology (medical),Molecular Biology,General Medicine,Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献