Coarse-to-Fine Classification of Road Infrastructure Elements from Mobile Point Clouds Using Symmetric Ensemble Point Network and Euclidean Cluster Extraction

Author:

Wang DuoORCID,Wang Jin,Scaioni MarcoORCID,Si Qi

Abstract

Classifying point clouds obtained from mobile laser scanning of road environments is a fundamental yet challenging problem for road asset management and unmanned vehicle navigation. Deep learning networks need no prior knowledge to classify multiple objects, but often generate a certain amount of false predictions. However, traditional clustering methods often involve leveraging a priori knowledge, but may lack generalisability compared to deep learning networks. This paper presents a classification method that coarsely classifies multiple objects of road infrastructure with a symmetric ensemble point (SEP) network and then refines the results with a Euclidean cluster extraction (ECE) algorithm. The SEP network applies a symmetric function to capture relevant structural features at different scales and select optimal sub-samples using an ensemble method. The ECE subsequently adjusts points that have been predicted incorrectly by the first step. The experimental results indicate that this method effectively extracts six types of road infrastructure elements: road surfaces, buildings, walls, traffic signs, trees and streetlights. The overall accuracy of the SEP-ECE method improves by 3.97% with respect to PointNet. The achieved average classification accuracy is approximately 99.74 % , which is suitable for practical use in transportation network management.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3