Rainfall Prediction Rate in Saudi Arabia Using Improved Machine Learning Techniques

Author:

Baljon Mohammed1,Sharma Sunil Kumar2ORCID

Affiliation:

1. Department of Computer Engineering, College of Computer and Information Sciences, Majmaah University, Majmaah 11952, Saudi Arabia

2. Department of Information System, College of Computer and Information Sciences, Majmaah University, Majmaah 11952, Saudi Arabia

Abstract

Every farmer requires access to rainfall prediction (RP) to continue their exploration of harvest yield. The proper use of water assets, the successful collection of water, and the successful pre-growth of water construction all depend on an accurate assessment of rainfall. The prediction of heavy rain and the provision of information regarding natural catastrophes are two of the most challenging factors in this regard. In the twentieth century, RP was the most methodically and technically complicated issue worldwide. Weather prediction may be used to calculate and analyse the behaviour of weather with unique features and to determine rainfall patterns at an exact locale. To this end, a variety of methodologies have been used to determine the rainfall intensity in Saudi Arabia. The classification methods of data mining (DM) approaches that estimate rainfall both numerically and categorically can be used to achieve RP. This study, which used DM approaches, achieved greater accuracy in RP than conventional statistical methods. This study was conducted to test the efficacy of several machine learning (ML) approaches for forecasting rainfall, utilising southern Saudi Arabia’s historical weather data obtained from the live database that comprises various meteorological data variables. Accurate crop yield predictions are crucial and would undoubtedly assist farmers. While engineers have developed analysis systems whose performance relies on several connected factors, these methods are seldom used despite their potential for precise crop yield forecasts. For this reason, agricultural forecasting should make use of these methods. The impact of drought on crop yield can be difficult to forecast and there is a need for careful preparation regarding crop choice, planting window, harvest motive, and storage space. In this study, the relevant characteristics required to predict precipitation were identified and the ML approach utilised is an innovative classification method that can be used determine whether the predicted rainfall will be regular or heavy. The outcomes of several different methodologies, including accuracy, error, recall, F-measure, RMSE, and MAE, are used to evaluate the performance metrics. Based on this evaluation, it is determined that DT provides the highest level of accuracy. The accuracy of the Function Fitting Artificial Neural Network classifier (FFANN) is 96.1%, which is higher than that of any of the other classifiers currently used in the rainfall database.

Funder

Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3