Attribution Analysis of Long-Term Trends of Aridity Index in the Huai River Basin, Eastern China

Author:

Li Meng,Chu RonghaoORCID,Islam Abu Reza Md. TowfiqulORCID,Jiang Yuelin,Shen Shuanghe

Abstract

This paper aims to combinedly investigate the spatiotemporal trends of precipitation (Pre), reference evapotranspiration (ET0), and aridity index (AI) by employing nonparametric methods based on daily datasets from 137 meteorological stations during 1961–2014 in the Huai River Basin (HRB). The dominant factors influencing ET0 and AI trends were also explored using the detrended and differential equation methods. Results show that (1) Pre, ET0, and AI were much larger in summer than in other seasons, and AI had a nonsignificant increasing trend in annual time scale, while Pre and ET0 exhibited decreasing trends, but AI showed a downward trend in spring and autumn (becoming drier) and an upward trend during summer and winter due to increased Pre (becoming wetter); (2) lower AI values were identified in north and higher in south, and lower ET0 was identified in south and higher in north in annual time scale, growing season and spring, while ET0 decreased from west to east in summer and winter, the spatial distribution of Pre was similar to that of AI; (3) for ET0 trends, in general, wind speed at two-meter height (u2) was the dominant factor in spring, autumn, winter, and annual time scale, while in other seasons, solar radiation (Rs) played a dominant role; (4) for AI trends, AI was mostly contributed by Pre in spring, autumn, and winter, the Rs contributed the most to AI trend in growing season and summer, then in annual time scale, u2 was the dominant factor; (5) overall, the contribution of Pre to AI trends was much larger than that of ET0 in spring, autumn, and winter, while AI was mostly contributed by ET0 in annual time scale, growing season and summer. The outcomes of the study may improve our scientific understanding of recent climate change effects on dry–wet variations in the HRB; moreover, this information may be utilized in other climatic regions for comparison analyses.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

National Key Research and Development Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3