A Comparison of Methods to Address Anaerobic Conditions in Rainwater Harvesting Systems

Author:

Gee Kathy DeBusk,Schimoler Daniel,Charron Bree T.,Woodward Mitch D.,Hunt William F.

Abstract

Although historically used in semi-arid and arid regions, rainwater harvesting (RWH) systems have increasingly been used in non-arid and humid regions of the world to conserve potable water and mitigate stormwater runoff. Rainfall characteristics and usage patterns of stored rainwater are distinctly different in (semi-)arid and humid regions, thus presenting a unique set of challenges with respect to their utilization. Coupled with infrequent use, the addition of nitrogen and organic matter via pollen during the spring season can lead to anaerobic conditions within storage tanks, which hinders nitrogen removal, gives stored water an offensive odor, and ultimately discourages use of the water. This study evaluated three measures that can be implemented for new and existing RWH systems to prevent the development of anaerobic conditions within storage tanks: first flush diversion, simulated use, and the continuous circulation of stored water. Study findings indicate that preventing anaerobic conditions via simulated use and recirculation (1) does not necessarily remedy the issue of poor aesthetics within rainwater storage tanks, and (2) can decrease the water quality benefits provided by these systems. Rather, preventing the introduction of pollen and particulate matter to the storage tank via a first flush diverter and minimizing disturbance of settled material in the tank appear to be the most effective methods of addressing the poor aesthetics and odor problems associated with anaerobic conditions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3