Synergistic Integration of MXene and Metal-Organic Frameworks for Enhanced Electrocatalytic Hydrogen Evolution in an Alkaline Environment

Author:

Hao Low Ping1,Hanan Abdul2ORCID,Walvekar Rashmi1,Khalid Mohammad234ORCID,Bibi Faiza2,Wong Wai Yin5ORCID,Prakash Chander6ORCID

Affiliation:

1. School of New Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia

2. Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia

3. Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India

4. School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India

5. Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi UKM 43600, Selangor, Malaysia

6. School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, Punjab, India

Abstract

The development of transition metal (TM) catalysts to replace precious metals has garnered increasing interest. Specifically, platinum (Pt)-based catalysts have been extensively investigated for their electrochemical performance in hydrogen evolution reaction (HER), which offer a clean means of producing hydrogen fuel without carbon emissions. However, the reliance on Pt-based catalysts has hindered the progress of HER development. Therefore, researchers have explored metal-organic frameworks (MOFs) as a substitute for noble Pt-based catalysts to address this issue. Nevertheless, the low electroconductivity of pure MOFs restricts their application in electrochemical fields. To overcome this limitation, MXenes have emerged as a promising two-dimensional (2D) material for coupling with MOFs to create an electrocatalyst with high electrical conductivity, a large surface area, and a tunable structure. In this study, we report the synthesis of a Ti3C2Tx (MXene) nanosheet-encapsulated MOFs catalyst (Ti3C2Tx@ZIF-8) with high activity and a low cost by encapsulating the precursor with ZIF-8 for HER in alkaline media. The catalyst exhibits an overpotential of only 507 mV at 20 mA/cm2 and a low Tafel slope value of 77 mV/dec. Additionally, cyclic voltammetry (CV) indicates an electrochemical active surface area (ECSA) of 122.5 cm2, and chronopotentiometry demonstrates the stable nature of the catalyst over 20 h without any significant changes in the overpotential value. The excellent electrochemical properties of Ti3C2Tx@ZIF-8 suggest its potential as a promising material for energy conversion applications.

Funder

Xiamen University Malaysia

International Research Network Grant Scheme

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3