Rational Design of a Biocatalyst Based on Immobilized CALB onto Nanostructured SiO2

Author:

Llerena Suster Carlos R.12,Toledo María V.1ORCID,Matkovic Silvana R.1,Morcelle Susana R.2,Briand Laura E.1

Affiliation:

1. Center for Research and Development in Applied Sciences-Dr. Jorge J. Ronco, Universidad Nacional de La Plata, CONICET, La Plata B1900AJK, Argentina

2. Center for Research in Vegetable Proteins (CIPROVE), Department of Biological Sciences, Faculty of Exact Sciences, The National University of La Plata-Associated Center CIC, La Plata B1900AFW, Argentina

Abstract

The adsorption of the lipase B from Candida antarctica (CALB) over nanostructured SiO2 (Ns SiO2 from now on) with and without the addition of polyols (sorbitol and glycerol) was investigated. The isotherms of adsorption made it possible to establish that the maximum dispersion limit was 0.029 µmol of protein per surface area unit of Ns SiO2 (29.4 mg per 100 mg of support), which was reached in 30 min of exposure. The studies through SDS-PAGE of the immobilization solutions and infrared spectroscopy of the prepared solids determined that CALB (from a commercial extract) is selectively adsorbed, and its secondary structure distribution is thus modified. Its biocatalytic activity was corroborated through the kinetic resolution of rac-ibuprofen. Conversions of up to 70% and 52% enantiomeric excess toward S-ibuprofen in 24 h of reaction at 45 °C were achieved. The biocatalytic performance increased with the increase in protein loading until it leveled off at 0.021 µmol.m−2, reaching 0.6 µmol.min−1. The biocatalyst containing the lipase at the maximum dispersion limit and co-adsorbed polyols presented the best catalytic performance in the kinetic resolution of rac-ibuprofen, an improved thermal resistance (up to 70 °C), and stability under long-term storage (more than 2 years).

Funder

National Scientific and Technical Research Council

National University of La Plata

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3