Polyoxometalates Encapsulated into Hollow Periodic Mesoporous Organosilica as Nanoreactors for Extraction Oxidation Desulfurization

Author:

Gao Yan1ORCID,Chen Yu1,Wang Cuiying1,Yin Aiping1,Li Hailong1,Zhao Jianshe2

Affiliation:

1. Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China

2. College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China

Abstract

In this work, the highly active polyoxometalate (PW2Mo2) with Venturello structure and its corresponding catalyst were applied in catalytic desulfurization for the first time. PW2Mo2 as an active component was effectively encapsulated in hollow periodic mesoporous organosilica (HPMOS) to form the nanoreactor PW2Mo2@HPMOS, where the central cavity and mesoporous shell facilitate mass transfer and both provide a stable place to react with organic sulfides. Desulfurization test results show that the hollow nanoreactor PW2Mo2@HPMOS can almost remove four sulfides simultaneously from diesel in 2 h under mild conditions. Besides, the nanocatalyst PW2Mo2@HPMOS can be reused and recycled for at least seven consecutive tests without any noticeable loss in performance. With the rapid development of the economy, the massive use of sulfur-containing fuel has a huge impact on the global climate. After combustion of sulfur-containing fuel, the realized SOX is an important inducement of the formation of acid rain, and the realized sulfur particle is also a major source of haze. Therefore, removing sulfur compounds from fuel is an important issue that needs to be solved immediately.

Funder

Fundamental Research Program of Shanxi Province

Scientific and Technological Innovation Programs (STIP) of Higher Education Institutions in Shanxi

Xinzhou Normal University Fund

Xinzhou Normal University PhD startup fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3