Catalytic Low-Temperature Thermolysis of Heavy Oil in the Presence of Fullerene C60 Nanoparticles in Aquatic and N2 Medium

Author:

Abdelsalam Yasser I. I.1,Aliev Firdavs A.1ORCID,Khamidullin Renat F.2,Dengaev Aleksey V.3,Katnov Vladimir E.1ORCID,Vakhin Alexey V.1ORCID

Affiliation:

1. Institute of Geology and Petroleum Technologies, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia

2. Department of Chemical Technologies and Petroleum Refining, Kazan National Research Technical University, 10 K. Marx St., 420111 Kazan, Russia

3. Faculty of Oil and Gas Fields Development, Gubkin University, 119991 Moscow, Russia

Abstract

Catalytic thermolysis is considered to be an effective process for viscosity reduction, the conversion of high-molecular components of oil (resins and asphaltenes) into light hydrocarbons, and the desulfurization of hydrocarbons. In this paper, we conducted non-catalytic and catalytic thermolysis of a heavy oil sample isolated from the Ashalcha oil field (Tatarstan, Russia) at a temperature of 250 °C. Fullerene C60 nanoparticles were applied to promote selective low-temperature thermolytic reactions in the heavy oil, which increase the depth of heavy oil upgrading and enhance the flow behavior of viscous crude oil. In addition, the influence of water content on the performance of heavy oil thermolysis was evaluated. It was found that water contributes to the cracking of high-molecular components such as resins and asphaltenes. The destruction products lead to the improvement of group and fractional components of crude oil. The results of the experiments showed that the content of asphaltenes after the aquatic thermolysis of the heavy oil sample in the presence of fullerene C60 was reduced by 35% in contrast to the initial crude oil sample. The destructive hydrogenation processes resulted in the irreversible viscosity reduction of the heavy oil sample from 3110 mPa.s to 2081 mPa.s measured at a temperature of 20 °C. Thus, the feasibility of using fullerene C60 as an additive in order to increase the yield of light fractions and reduce viscosity is confirmed.

Funder

Russian science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3