Bio-Based Materials versus Synthetic Polymers as a Support in Lipase Immobilization: Impact on Versatile Enzyme Activity

Author:

Jasińska Karina12ORCID,Zieniuk Bartłomiej2ORCID,Jankiewicz Urszula3ORCID,Fabiszewska Agata2ORCID

Affiliation:

1. Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), 159c Nowoursynowska St., 02-776 Warsaw, Poland

2. Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), 159c Nowoursynowska St., 02-776 Warsaw, Poland

3. Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences—SGGW (WULS—SGGW), 159 Nowoursynowska Street, 02-776 Warsaw, Poland

Abstract

To improve enzyme stability, the immobilization process is often applied. The choice of a support on which the enzymes are adsorbed plays a major role in enhancing biocatalysts’ properties. In this study, bio-based (i.e., chitosan, coffee grounds) and synthetic (i.e., Lewatit VP OC 1600) supports were used in the immobilization of lipases of various microbial origins (yeast (Yarrowia lipolytica) and mold (Aspergillus oryzae)). The results confirmed that the enzyme proteins had been adsorbed on the surface of the selected carriers, but not all of them revealed comparably high catalytic activity. Immobilized CALB (Novozym 435) was used as a commercial reference biocatalyst. The best hydrolytic activity (higher than that of CALB) was observed for Novozym 51032 (lipase solution of A. oryzae) immobilized on Lewatit VP OC 1600. In terms of synthetic activity, there were only slight differences between the applied carriers for A. oryzae lipase, and the highest measures were obtained for coffee grounds. All of the biocatalysts had significantly lower activity in the synthesis reactions than the reference catalyst.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3