Superior Photocatalytic Activity of BaO@Ag3PO4 Nanocomposite for Dual Function Degradation of Methylene Blue and Hydrogen Production under Visible Light Irradiation

Author:

Selim Hanaa1,Sheha E. R.2,Elshypany Rania1,Raynaud Patrice3,El-Maghrabi Heba H.34ORCID,Nada Amr A.13ORCID

Affiliation:

1. Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo P.O. Box 11727, Egypt

2. Cyclotron Facility, Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt

3. Laboratoire Plasma et Conversion d’Energie (LAPLACE), Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France

4. Department of Refining, Egyptian Petroleum Research Institute, Cairo P.O. Box 11727, Egypt

Abstract

The current work focuses on the photo degradation of organic pollutants, particularly methylene blue (MB) dye, and the production of hydrogen as green energy using a composite of silver phosphate Ag3PO4 (AP) and barium oxide/silver phosphate BaO@Ag3PO4 (APB) as a photocatalyst. This composite was successfully synthesized using a chemical co-precipitation approach. The physicochemical properties of the obtained samples were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. From XRD, the average crystallite sizes of AP and APB are 39.1 and 46 nm, respectively, with a homogeneous morphology detected by SEM. UV and PL experiments showed that the compound is active under visible light, with an improvement in the lifetimes of the electrons and the holes in the presence of BaO with Ag3PO4. The as-synthesized APB photocatalyst sample showed a remarkably high degradation efficiency of MB (20 ppm, 50 mL) of around 94%, with a hydrogen production yield of around 7538 μmol/(h·g), after 120 min of illumination, which is greater than the degradation efficiency of the AP photocatalyst sample, which was about 88%. The high photodegradation efficiency was attributed to the electronic promotion effect of the BaO particles. The APB composite demonstrated an increased photocatalytic performance in effectively degrading an organic dye (MB) with no secondary pollutants when exposed to visible light irradiation.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3