Methanation of CO2 over High Surface Nickel/Aluminates Compounds Prepared by a Self-Generated Carbon Template

Author:

Roudane Sarra,Bettahar Noureddin,Caballero Alfonso,Holgado Juan Pedro

Abstract

Catalytic gas-phase hydrogenation of CO2 into CH4 was tested under three different nickel/aluminate catalysts obtained from precursors of hexaaluminate composition (MAl16O19, M = Mg, Ca, Ba). These catalysts were prepared using a carbon template method, where carbon is self-generated from a sol-gel that contains an excess of citric acid and the Al and M salts (Ba2+, Ca2+, Mg2+) by two-step calcination in an inert/oxidizing atmosphere. This procedure yielded Ni particles decorating the surface of a porous high surface area matrix, which presents a typical XRD pattern of aluminate structure. Ni particles are obtained with a homogeneous distribution over the surface and an average diameter of ca 25–30 nm. Obtained materials exhibit a high conversion of CO2 below 500 °C, yielding CH4 as a final product with selectivity >95%. The observed trend with the alkaline earth cation follows the order NiBaAlO-PRx > NiCaAlO-PRx > NiMgAlO-PRx. We propose that the high performance of the NiBaAlO sample is derived from both an appropriate distribution of Ni particle size and the presence of BaCO3, acting as a CO2 buffer in the process.

Funder

Junta de Andalucia

Ministerio de Ciencia

Algerian Ministry of Higher Education and Scientific Research

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference66 articles.

1. International Energy Agency (1995). World Energy Outlook, OECD/IEA.

2. (2019). BP Energy Outlook, BP. 2019 Edition.

3. Depletion of fossil fuels and anthropogenic climate change—A review;Tang;Energy Policy,2013

4. Beyond Oil and Gas: The Methanol Economy;Olah;Angew. Chem. Int. Ed.,2005

5. Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation;Meylan;Energy Policy,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3