Continuous Flow Photochemical Synthesis of 3-Methyl-4-arylmethylene Isoxazole-5(4H)-ones through Organic Photoredox Catalysis and Investigation of Their Larvicidal Activity

Author:

Sampaio Ana Beatriz S.1,Mori Mônica Shigemi S.2,Albernaz Lorena C.2ORCID,Espindola Laila S.2ORCID,Salvador Carlos Eduardo M.1,Andrade Carlos Kleber Z.1

Affiliation:

1. Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Instituto de Química, Universidade de Brasília, Campus Universitário Asa Norte, Brasilia 70904-970, Brazil

2. Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Universitário Asa Norte, Brasilia 70904-970, Brazil

Abstract

Isoxazole-5(4H)-ones are heteropentacycle compounds found in several bioactive molecules with pharmaceutical and agrochemical properties. A well-known multicomponent reaction between β-ketoester, hydroxylamine, and aromatic aldehydes leads to 3-methyl-4-arylmethylene isoxazole-5(4H)-ones, in mild conditions. The initial purpose of this work was to investigate whether the reaction might be induced by light, as described in previous works. Remarkable results were obtained using a high-power lamp, reducing reaction times compared to methodologies that used heating or catalysis. Since there are many examples of successful continuous flow heterocycle synthesis, including photochemical reactions, the study evolved to run the reaction in flow conditions and scale up the synthesis of isoxazolones using a photochemical reactor set-up. Eight different compounds were obtained, and among them, three showed larvicidal activity on immature forms of Aedes aegypti in tests that investigated its growth inhibitory character. Mechanistic investigations indicate that the reactions occur through organic photoredox catalysis.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3