Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO2@HPS

Author:

Stepacheva Antonina A.1ORCID,Manaenkov Oleg V.1ORCID,Markova Mariia E.1,Sidorov Alexander I.1,Bykov Alexsey V.1,Sulman Mikhail G.1,Kiwi-Minsker Lioubov23

Affiliation:

1. Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitin str. 22, 170026 Tver, Russia

2. Regional Technological Center, Tver State University, Zhelyabova str. 33, 170100 Tver, Russia

3. Department of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, ISIC-EPFL, CH-1015 Lausanne, Switzerland

Abstract

Lignin obtained by hydrogenolysis of lignocellulose biomass is a prospective source of valuable green fuels and chemicals such as monophenols. One of the key factors in the chemical decomposition of lignin to monophenols is an efficient catalyst. Inert porous materials such as hypercrosslinked polymers are suitable catalytic supports for the immobilization of noble and transition metal nanoparticles. However, such polymers do not have acidic properties, which are crucial for catalyzing hydrolysis. In this work, we report novel, efficient catalysts for lignin hydrogenolysis to produce valuable monophenolic compounds. The synthesized catalysts contained Ni, Ru, and Ni–Ru nanoparticles supported on SiO2-coated hypercrosslinked polystyrene (SiO2@HPS). Ni-Ru/SiO2@HPS demonstrated remarkable stability without any loss of the metallic phase and a high yield of monophenols (>42 wt.%) at close to full lignin conversion (>95 wt.%). This result was attributed to the synergy between the two metals and the support’s surface acidity. All catalysts were fully characterized by a series of physico-chemical methods.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3