Methane Production from Biomass by Thermochemical Conversion: A Review

Author:

Wu Yuke1,Ye Xinchen1,Wang Yutong1,Wang Lian1

Affiliation:

1. College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Methane, the main component of natural gas, is one of the primary sources of energy extensively employed worldwide. However, the utilization of natural gas is limited by reserves and geographical availability. Thus, a thermochemical method of converting biomass to methane is appealing, especially gasification. Important factors affecting methane production are discussed in the review including operating parameters, catalysts of methanation and gas conditioning effects. Low temperature and high pressure are beneficial to promote methanation reaction. Ni-based catalysts are widely used as methanation catalysts, but suffer from deactivation problems due to carbon deposition, sintering and poisoning. The methods of gas conditioning include using water gas shift reaction and adding hydrogen from electrolysis. In addition, environmental and economic views are discussed. Other thermochemical process including hydrothermal gasification, fast pyrolysis and direct methanation at low temperature are also introduced briefly. Based on the above discussion, potential research directions for optimizing methane production are proposed.

Funder

College Students’ innovation and entrepreneurship training program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3